欧美精品AⅤ一区二区三区,亚洲乱码精品久久久久,99久久久国产精品免费蜜臀,精品人妻系列无码人妻免费视频,伊人久久精品无码麻豆一区,久久99人妻无码精品一区二区,国产精品免费久久久久影院仙踪林,久久99国产精品久久99果冻传媒

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > Researchers grow active mini-brain-networks

Researchers grow active mini-brain-networks

Date:

June 27, 2019

Source:

Cell Press

Summary:

Cerebral organoids are artificially grown, 3D tissue cultures that resemble the human brain. Now, researchers report success with functional neural networks derived from these organoids. Although the organoids aren't actually 'thinking,' the researchers' new tool -- which detects neural activity using organoids -- could provide a method for understanding human brain function.

Cerebral organoids are artificially grown, 3D tissue cultures that resemble the human brain. Now, researchers from Japan report functional neural networks derived from these organoids in a study publishing June 27 in the journal Stem Cell Reports. Although the organoids aren't actually "thinking," the researchers' new tool -- which detects neural activity using organoids -- could provide a method for understanding human brain function.

                                                             

"Because they can mimic cerebral development, cerebral organoids can be used as a substitute for the human brain to study complex developmental and neurological disorders," says corresponding author Jun Takahashi, a professor at Kyoto University.

 

However, these studies are challenging, because current cerebral organoids lack desirable supporting structures, such as blood vessels and surrounding tissues, Takahashi says. Since researchers have a limited ability to assess the organoids' neural activities, it has also been difficult to comprehensively evaluate the function of neuronal networks.

 

"In our study, we created a new functional analysis tool to assess the comprehensive dynamic change of network activity in a detected field, which reflected the activities of over 1,000 cells," says first and co-corresponding author Hideya Sakaguchi, a postdoctoral fellow at Kyoto University (currently at Salk Institute). "The exciting thing about this study is that we were able to detect dynamic changes in the calcium ion activity and visualize comprehensive cell activities."

 

To generate the organoids, Takahashi, Sakaguchi, and their team created a ball of pluripotent stem cells that have the potential to differentiate into various body tissues. Then, they placed the cells into a dish filled with culture medium that mimicked the environment necessary for cerebral development. Using the organoids, the team successfully visualized synchronized and non-synchronized activities in networks and connections between individual neurons. The synchronized neural activity can be the basis for various brain functions, including memory.

 

"We believe that our work introduces the possibility of a broad assessment of human cell-derived neural activity," Sakaguchi says. The method could help researchers understand processes by which information is encoded in the brain through the activity of specific cell populations, as well as the fundamental mechanisms underlying psychiatric diseases, he says.

 

While cerebral organoids provide a means for studying the human brain, ethical concerns have been previously raised regarding the neural function of cerebral organoids.

 

"Because cerebral organoids mimic the developmental process, a concern is that they also have mental activities such as consciousness in the future," Sakaguchi says. "Some people have referenced the famous 'brains in a vat' thought experiment proposed by Hilary Putnam, that brains placed in a vat of life-sustaining liquid with connection to a computer may have the same consciousness as human beings."

 

However, Takahashi and Sakaguchi believe that cerebral organoids are unlikely to develop consciousness because they lack input from their surrounding environments.

 

"Consciousness requires subjective experience, and cerebral organoids without sensory tissues will not have sensory input and motor output," Sakaguchi says. "However, if cerebral organoids with an input and output system develop consciousness requiring moral consideration, the basic and applied research of these cerebral organoids will become a tremendous ethical challenge."

 

In the future, applied organoid research will likely explore three main areas -- drug discovery, modelling neuropsychiatric disorders, and regenerative medicine, Takahashi says.

 

"Cerebral organoids can bring great advances to pharmacological companies by replacing traditional animal models and can also be used to model untreatable neural diseases," he says. "Using our method, it will be possible to analyze cell activity patterns in brain functions to further explore these areas."

 

Story Source:

 

Materials provided by Cell Press. Note: Content may be edited for style and length.

 

Journal Reference:

 

Hideya Sakaguchi, Yuki Ozaki, Tomoka Ashida, Takayoshi Matsubara, Naotaka Oishi, Shunsuke Kihara, Jun Takahashi. Self-Organized Synchronous Calcium Transients in a Cultured Human Neural Network Derived from Cerebral Organoids. Stem Cell Reports, 2019; DOI: 10.1016/j.stemcr.2019.05.029

    

田东县| 论坛| 柳州市| 吕梁市| 黔江区| 南京市| 广东省| 泰州市| 安国市| 蒲江县| 登封市| 习水县| 城固县| 宁强县| 巫山县| 台湾省| 北京市| 朝阳县| 长乐市| 那坡县| 湘阴县| 莆田市| 莒南县| 奉贤区| 伊金霍洛旗| 秀山| 墨玉县| 阿图什市| 疏附县| 乐业县| 大渡口区| 手机| 叙永县| 井陉县| 昌都县| 隆安县| 会昌县| 遵化市| 江达县| 江永县| 通许县|